The Elements of Statistical Learning: Data Mining, Inference, and Prediction, Second Edition (Springer Series in Statistics)

$83.24 - $127.53
(No reviews yet) Write a Review
UPC:
9780387848570
Maximum Purchase:
3 units
Binding:
Hardcover
Publication Date:
2016-12-21
Author:
Trevor Hastie;Robert Tibshirani;Jerome Friedman
Language:
english
Edition:
2nd
Adding to cart… The item has been added

This book describes the important ideas in a variety of fields such as medicine, biology, finance, and marketingin a common conceptual framework. While the approach is statistical, the emphasis is on concepts rather than mathematics. Many examples are given, with a liberal use of colour graphics. It isa valuable resource for statisticians and anyone interested in data mining in science or industry. The book's coverage is broad, from supervised learning (prediction) to unsupervised learning. The many topics include neural networks, support vector machines, classification trees and boosting---the first comprehensive treatment of this topic in any book.

This major new edition features many topics not covered in the original, including graphical models, random forests, ensemble methods, least angle regression & path algorithms for the lasso, non-negative matrix factorisation, and spectral clustering. There is also a chapter on methods for wide'' data (p bigger than n), including multiple testing and false discovery rates.