This sequel to the widely read Zen and the Brain continues James Austin's explorations into the key interrelationships between Zen Buddhism and brain research. In Zen-Brain Reflections, Austin, a clinical neurologist, researcher, and Zen practitioner, examines the evolving psychological processes and brain changes associated with the path of long-range meditative training. Austin draws not only on the latest neuroscience research and new neuroimaging studies but also on Zen literature and his personal experience with alternate states of consciousness.
Zen-Brain Reflections takes up where the earlier book left off. It addresses such questions as: how do placebos and acupuncture change the brain? Can neuroimaging studies localize the sites where our notions of self arise? How can the latest brain imaging methods monitor meditators more effectively? How do long years of meditative training plus brief enlightened states produce pivotal transformations in the physiology of the brain? In many chapters testable hypotheses suggest ways to correlate normal brain functions and meditative training with the phenomena of extraordinary states of consciousness.
After briefly introducing the topic of Zen and describing recent research into meditation, Austin reviews the latest studies on the amygdala, frontotemporal interactions, and paralimbic extensions of the limbic system. He then explores different states of consciousness, both the early superficial absorptions and the later, major peak experiences. This discussion begins with the states called kensho and satori and includes a fresh analysis of their several different expressions of oneness. He points beyond the still more advanced states toward that rare ongoing stage of enlightenment that is manifest as sage wisdom.
Finally, with reference to a delayed moonlight phase of kensho, Austin envisions novel links between migraines and metaphors, moonlight and mysticism. The Zen perspective on the self and consciousness is an ancient one. Readers will discover how relevant Zen is to the neurosciences, and how each field can illuminate the other.